

Carrier Transport in Amorphous Oxide Semiconductor Thin Film Transistors

Sungsik Lee and Arokia Nathan

The Hetero-Genesys Laboratory, Department of Engineering, University of Cambridge (E-mails: sl684@cam.ac.uk, an299@cam.ac.uk)

Introduction

- TLC and Percolation dominant at high temperatures, depending on gate bias.
- VRH prevalent at low temperatures, showing a linear signature in T^{-1/4}.

Results and Discussions

■ I-V and field effect mobility:

Carrier densities in different temperatures:

Illustration of TLC, Percolation, and VRH:

Conductivity and VRH signature:

Conclusion

• Results provide a key analytical insight into electron transport and mobility in AOS TFTs, capturing the relative dominance of trap limited conduction, percolation, and variable range hopping.

- Related Publications:
- Sungsik Lee et al., Applied Physics Letters 98(20), 203508 (2011).
 - Sungsik Lee et al., IEEE IEDM (2011).